Type to search

The 5G wireless revolution

The 5G wireless revolution

Share

What is 5G?

It’s the next (fifth) generation of cellular technology, and it promises to greatly enhance the speed, coverage and responsiveness of wireless networks. How fast are we talking? Verizon’s network showed speeds surging past 1 gigabit per second.

That’s 10 to 100 times speedier than your typical cellular connection, and even faster than anything you can get with a physical fiber-optic cable going into your house. (In optimal conditions, you’ll be able to download a season’s worth of Stranger Things in seconds.)

Is it just about speed?

No! One of the key benefits is something called low latency. You’ll hear this term a lot. Latency is the response time between when you click on a link or start streaming a video on your phone, which sends the request up to the network, and when the network responds, delivering you the website or playing your video.

That lag time can last around 20 milliseconds with current networks. It doesn’t seem like much, but with 5G, that latency gets reduced to as little as 1 millisecond, or about the time it takes for a flash on a normal camera. 

That responsiveness is critical for things like playing an intense video game in virtual reality or for a surgeon in New York to control a pair of robotic arms performing a procedure in San Francisco, though latency will still be affected by the ultimate range of the connection. The virtually lag-free connection means self-driving cars have a way to communicate with each other in real time — assuming there’s enough 5G coverage to connect those vehicles. 

How does it work?

5G initially used super-high-frequency spectrum, which has shorter range but higher capacity, to deliver a massive pipe for online access. Think of it as a glorified Wi-Fi hotspot. 

But given the range and interference issues, the carriers are also using lower-frequency spectrum — the type used in today’s networks — to help ferry 5G across greater distances and through walls and other obstructions. 

Sprint claims it has the biggest 5G network because it’s using its 2.5 gigahertz band of spectrum, which offers wider coverage. T-Mobile plans a bigger roll out of its 5G network in the second half thanks to the use of even lower-band spectrum. And AT&T says it plans to offer 5G coverage nationwide over its lower-band Sub-6 spectrum in early 2020.

The result is that the insane speeds companies first promised won’t always be there, but we’ll still see a big boost from what we get today with 4G LTE. 

Where do these carriers get the spectrum?

Some of these carriers already control small swaths of high-frequency radio airwaves, but many will have to purchase more from the government. Carriers around the world are working with their respective governments to free up the necessary spectrum. In the US, the Federal Communications Commission is holding more auctions for so-called millimetre wave spectrum, which all the carriers are participating in. 

error: Content is protected !!